
1
American Institute of Aeronautics and Astronautics

AN OBJECT-ORIENTED DESIGN FOR RAPID MODIFICATION
OF FILTERS

Michael M. Madden*

Unisys Corporation
20 Research Drive

Hampton, VA 23666

Abstract
Using object-oriented languages, developers can pack-
age data and functions into classes and relate them by
the services they provide. Classes that provide the same
service but use different implementations are placed in
inheritance relationships. The base class declares the
interface for the service, and the derived classes define
the implementation. Thus, client code can be written to
the unified interface, but the system behavior depends
on the actual class that is constructed. This feature is
called abstraction [1]. Abstraction removes decisions
about system configuration from the code that models
operation to the code that handles construction. The
operational code is easier to read and maintain. The
operational code is also more efficient because it does
not redundantly evaluate configuration logic every
frame. Control system development and research can
benefit from the application of abstraction. In simula-
tions used for control system research and development,
transfer function definitions frequently change. The
change can occur in the coefficients, the order of the
transfer function, or the digital algorithm. The simula-
tion may retain several transfer function configurations
for comparative analysis or to accommodate multiple
research projects. Applying abstraction to the design of
transfer functions keeps the logic that manages different
configurations out of the operational code. ∗

∗ Senior Member, AIAA
Copyright � 1999 by the author. Published by the
American Institute of Aeronautics and Astronautics,
Inc. with permission.

Introduction
This paper examines the advantages that object-oriented
design brings to the rapid modification of transfer func-
tions, called filters within this paper. Rapid modifica-
tion is the ease by which the definition of a filter can be
found and changed correctly†. A filter’s definition in-
cludes its order, its coefficients, and the digital algo-
rithm that implements the transfer function (e.g. a
Tustin z-transform). The paper also explores a related
topic, the simplicity of maintaining multiple filter con-
figurations. Maintenance of multiple configurations
includes the ease with which a new configuration can be
created and the ease of identifying and correctly modi-
fying existing configurations.

Rapid modification and multiple configurations are im-
portant in simulation projects that involve control sys-
tem‡ development or research. In these projects, filter
definitions frequently change; and multiple filter con-
figurations are retained for comparison. To highlight
the advantages that object-oriented design brings to this
environment, the object-oriented design is compared to
a procedural design. The procedural design originates
from the Langley Standard Real-time Simulation
(LaSRS), a simulation framework written in FOR-
TRAN. The LaSRS design is not unique; similar im-
plementations have appeared in simulation code re-

† Correctness is an important criterion. Between de-
signs that aid change, a design that inhibits uninten-
tional defects is superior to one that facilitates them.
‡ This paper defines a control system as a collection of
models that simulate from the pilot controls to the con-
trol effectors; e.g., stick dynamics, control laws, and
actuator models.

AIAA-99-4342

2
American Institute of Aeronautics and Astronautics

ceived from third parties. The object-oriented design
comes from the successor to LaSRS, LaSRS++, written
using C++.

The Procedural Design
LaSRS implements each pair of transfer function order
(e.g. first order, second order) and digital algorithm as a
function. For example, the function signature for a first
order filter implemented with a Tustin z-transform is:

FUNCTION FOTUST(U,A,B,C,D,SCR)

The arguments are defined as follows: U is the input to
the filter. A, B, C, and D are the Laplace-domain coef-
ficients. SCR is an array of at least six elements in
length; the array holds the equivalent z-domain coeffi-
cients and the past values of the input and output. The
subroutine also has a hidden dependence on the variable
T (elapsed time) and H (time step); these are accessed
globally through a common block. The function returns
the output of the filter calculation. The procedural de-
sign has two characteristics that complicate filter modi-
fication and maintenance of multiple configurations.
First, the filter function is separate from its implemen-
tation data, i.e. the scratch array. Second, the function
tightly binds a filter’s definition to its execution.

The developer must create and manage a “scratch” ar-
ray for each filter. The size of the scratch array differs
by transfer function order (since order dictates the num-
ber of internal states that must be stored). If a new re-
lease of the control system changes the order of the
transfer function, the developer must remember to
change the size of the scratch array in addition to the
subroutine call. Otherwise, a defect will be introduced;
the program will read and write past an array boundary.
Alternatively, the developer could make all “scratch”
arrays large enough to accommodate the highest order
filter supported by the framework. However, this in-
creases the memory requirements for the simulation
unnecessarily. The scratch array being distinct from the
filter function also opens the possibility that a scratch
array will accidentally be used more than once, also
introducing a defect; later filters will incorrectly use the
internal states and temporary calculations of earlier fil-
ters. The potential defects associated with scratch ar-
rays are very difficult to uncover.

Multiple configurations further complicate the man-
agement of scratch arrays. The developer can create a
new scratch array for each filter of each configuration;
this significantly increases the number of scratch arrays
that are maintained. Or, the developer can create one
scratch array for all configurations of a given filter; the
developer must still remember to correctly size the array
each time a new configuration is added.

The filter function defines and executes the filter. Thus,
the filter definition is ingrained in the control system
operational code. If a change is made to either the trans-
fer function or the digital algorithm of a filter, the
change appears in the operational code. Since filter exe-
cutions are dispersed throughout the operational code,
the definitions are also isolated; the developer cannot
collect filter definitions in a central location for easy
inspection and modification. In large control systems,
the developer will traverse thousands of lines of code to
find the execution point of the filters to be changed.

The isolation of filter definitions presents a problem for
supporting multiple configurations. Multiple configura-
tions are typically selected using conditional statements
(e.g. IF-THEN). The developer can place a conditional
statement at the execution point of each filter in the
configuration. This effectively litters the operational
code with conditional statements, reducing performance
and readability. To identify the configuration, all condi-
tional statements must be located and analyzed. Alter-
natively, the developer can copy and tailor the opera-
tional code for each configuration. Then, one condi-
tional statement selectively executes the operational
code tailored for a given configuration. This option
significantly increases code size and creates a mainte-
nance problem. The developer must replicate changes
to the operational code across all copies. In both cases,
the simulation evaluates the configuration each frame of
operation even though the configuration will not change
during operation. The extra computation is inefficient
and is better placed in the initialization code. But, the
procedural design prevents it.

Representing the transfer function coefficients with
variables can transplant part of the filter configuration
to the initialization code. The coefficient definitions are
relocated from the operational code to the initialization

3
American Institute of Aeronautics and Astronautics

code. Any change to a filter coefficient is now made in
the initialization code; the operational code remains
unmodified. Configurations that differ only by the coef-
ficients are evaluated once in the initialization code; the
operational code no longer performs this evaluation.
However, changing the transfer function order or the
digital algorithm still requires a change to the opera-
tional code. In fact, a different function is called. At
best, the procedural design allows only part of the filter
definition to be configurable during initialization.

The following examples summarize the steps involved
in modifying filters and creating a new configuration;
they represent worst case condition: order, coefficients,
and digital algorithm are changed. The order of the
transfer function is increased in the example.

Changing an existing filter
1) Search the operational code for the filter.
2) Change the name of the filter function to the func-

tion appropriate for the new order and digital algo-
rithm.

3) Create new variable names for the additional coef-
ficients.

4) Note the name of the scratch array and new coeffi-
cient variables.

5) Search the declaration code for the scratch array
and expand its size for the new filter function.

6) Search for the coefficient declarations and declare
the new variables.

7) Modify initialization code for the new coefficient
variables.

Creating a new configuration
1) For each filter in the configuration§:

a) Search the operational code for the filter.
b) Add a conditional statement for selecting the

configuration.
c) Add the function call for the new filter.
d) To minimize data size, reuse as many variables

from the other configurations and perform
steps 3-7 in the “Changing an existing filter.”

§ These instructions loop; the total number of steps is
the product of the steps for one filter and the number of
filters in the configuration.

The new scratch array must be large enough to
support all configurations.

These steps show that the procedural design requires
changes to multiple units of code (e.g. declaration, ini-
tialization, and operation) when a filter is changed.
Depending on the development process, each of these
units may require review, testing, and verification.
Modified code units and their dependents must also be
re-compiled; as more code units are changed, the set of
files that are re-compiled grows. If multiple program-
mers develop the operational code, placing filter defini-
tions in the operational code also impacts configuration
management. The operational code is very volatile
during development. The procedural design adds filter
definitions and multiple configurations as potential
changes to the operational code. Thus, the procedural
design can significantly increase the potential changes
that must be reconciled when the work of multiple de-
velopers is combined. The more changes that must be
reconciled in a unit of code, the larger the chance that a
defect will be introduced during the merge process. All
these factors indicate that maintenance of the procedural
design can be costly.

The Object-Oriented Design
The object-oriented design eliminates the disadvantages
of the procedural design by exhibiting the opposite
characteristics. In other words, the implementation data
is bound to the implementation; and the filter definition
is separate from its execution. This is accomplished
using abstraction mechanisms of encapsulation and
polymorphism [1]. Encapsulation hides the implemen-
tation details of the object; it exposes only the necessary
functionality. Encapsulation frees the developer from
the details of creating and managing the “scratch” array
for each filter. Thus, encapsulation binds an implemen-
tation with its data. Polymorphism allows the developer
to name an action for a hierarchy of classes but allows
each class to implement it differently. Developers can
act on objects of these classes as if they were all objects
of the base class but invoke behavior specific to the
actual class of the object. Polymorphism allows the
definition of a filter to be completely separate from its
execution. The operational code executes a filter with-
out knowing its transfer function or digital algorithm.

4
American Institute of Aeronautics and Astronautics

Figures 1 and 2 display the object-oriented filter design
using unified modeling language (UML) notation [4].
Figure one shows a top-level view of the filter classes.
Figure two illustrates how classes of digital algorithms
(simple z-transforms in this case) are represented and
associated with a filter. For ease of understanding, the
figures show a simplification of the LaSRS++ design,
focussing on filters using simple z-transforms as their
digital algorithm¶.

The design employs the strategy design pattern. The
strategy pattern “defines a set of algorithms, encapsu-
lates each one, and makes them interchangeable. Strat-
egy lets the algorithm vary independently from the cli-
ents that use it [6].” The Filter class is the base class of
the hierarchy. As exemplified by the fastFilterCalc()
method, the Filter class defines a filter to be an object

¶ LaSRS++ also contains filters that use fixed-step inte-
grators, include rate and position limiting, etc.

that accepts an input, performs a calculation on the in-
put, and produces an output. fastFilterCalc() consists of
a case statement that performs reset() or calculate()
based on simulation mode. reset() returns either the
steady state output for the given input (default) or a
user-defined initial output. calculate() executes the
digital algorithm. reset() and calculate() are not de-
fined; they are polymorphic methods. The derived
classes must define them. The order of the transfer
function distinguishes the derived classes. The order
determines the number of Laplace-space coefficients
that defines the filter (i.e. a, b, c, d, e, and f) and the
amount of implementation data required. Thus, the
order is the next level of commonality between filters.

Unlike the procedural functions, the filter classes are
not subdivided by digital algorithm. The FirstOrder-
Filter and SecondOrderFilter classes can apply a variety
of z-transforms because the z-transforms are also
classes. In fact, the z-transforms are also modeled using

Figure 1 Filter Class Diagram

SecondOrderFilter

d : double
a : double
b : double
c : double
e : double
f : double
input_t_2 : double
output_t_2 : double

slowFilterCalc()
reset()
calculate()

(from Filters)

Mode
(from Timers)

Timer

Timer()
reset()
pause()
run()
increment()
getTimeStep()
putTimeStep()
getElapsedTime()
getCount()
isCounting()

(from Timers)Filter

last_output : double
last_input : double

fastFilterCalc(signal : const double) : double
reset(signal : const double) : double
calculate(signal : const double) : double
getLastOutput() : double
getLastInput() : double

(from Filters)

1 1

#mode

1 1

11

#timer

11

FirstOrderFilter

d : double
a : double
b : double
c : double

slowFilterCalc()
reset()
calculate()

(from Filters)

Mode is an enumeration
that contains the current
simulation mode.
LaSRS++ modes
include RESET, TRIM,
HOLD, and OPERATE.

Timer is a class that
manages the simulation
time step, the elapsed
time in OPERATE, and
the count of elapsed
frames in OPERATE.

5
American Institute of Aeronautics and Astronautics

the strategy design pattern. The filter object is paired
with a z-transform when constructed; developers can
mix and match filter objects with z-transforms#. These
simple z-transforms are algorithms of the form:

Equation 1 Simple Z-Transform

()�
=

∆−∆− ++=
O

n
tntntntn ycxbaxy

1

where y is the output, x is the input, O is the order of the
transfer function, and a, b, and c are coefficients. The
coefficients are derived from the Laplace-space coeffi-
cients, the time step, and the z-transform. Since order
determines the number of coefficients required, the z-
transforms, like the filters, are categorized by order.
Thus, a filter object can only be paired with a z-
transform of the same order. Figure two shows the first
order z-transforms**. The base class, FirstOrderTrans-
form, encapsulates Equation 1 to first order. The base
class holds three coefficients, one each for the input,

LaSRS++ filters that utilize fixed-step integrators as
their digital algorithm follow the same design. The
integrators are encapsulated in classes that can be
matched with a filter class.
** The design for the second order transform is identical
except that the base class, SecondOrderTransform,
contains five coefficients and its methods require two
more double arguments.

last input (t-∆t), and last output (t-∆t). calcOutput()
implements the equation. calcCoefficients() is a poly-
morphic method; its arguments demonstrate that the
coefficients are purely a function of the Laplace-space
coefficients and the time step. The sole purpose of the
derived class is to define this coefficient function based
on a given z-transform.

The Filter hierarchy stores the past values needed in
Equation 1. The Filter class stores the last output and
last input; all filters, regardless of order, require them.
The SecondOrderFilter stores the additional past states
that it needs (i.e. input and output at t-2∆t).

Encapsulation
Filter objects are defined when they are constructed.
For example,

FirstOrderFilter filter_1(timer,
mode, a, b, c, d, TUSTIN);

SecondOrderFilter filter_2(timer,
mode, a, b, c, d, e, f, EULER);

The arguments are defined as follows: ‘timer’ is a ref-
erence to a class that contains the time step. ‘mode’ is a
reference to an enumeration that represents the current
simulation mode (i.e. RESET, HOLD, OPERATE,
etc.). The letters a through f are the Laplace domain
coefficients. The final argument is an enumeration that
specifies the z-transform used by the filter. The argu-
ment list does not contain any “scratch” array. The

Figure 2 Z-Transform Class Diagram

FirstOrderTransform

c_last_output : double
c_input : double
c_last_input : double

calcCoefficients(delta_t : double, a : double, b : double, c : double, d : double) : void
calcOutput(last_output : double, input : double, last_input : double) : double

(from Filters)

FirstOrderFilter

d : double
a : double
b : double
c : double
time_step : double

FirstOrderFilter()
slowFilterCalc()
~FirstOrderFilter()
reset()
getTransform()
calculate()
calcCoefficientsIfChanged()

(from Filters)

0..1 1

-transform

0..1 1

EulerOne

calcCoefficients()

(from Filters)
PreWarpTustinOne

calcCoefficients()

(from Filters)
RectangularOne

calcCoefficients()

(from Filters)
RootMatchingOne

calcCoefficients()

(from Filters)
TustinOne

calcCoefficients()

(from Filters)

6
American Institute of Aeronautics and Astronautics

“scratch” variables are coded into the filter and z-
transform classes. A filter object contains the exact
number of past values it requires. The z-transform
contains the exact number of derived coefficients that it
requires. To create the filter, the developer does not
need to know much workspace a filter needs nor declare
the workspace. The object-oriented design isolates the
developer from that level of detail. The workspace
variables are “encapsulated” in the class definitions.
The object-oriented design eliminates the two potential
defects associated with the scratch array in the proce-
dural design: reading and writing past array bounds or
more than one filter accessing the same scratch array.
Also, the object-oriented design allocates the exact
amount of workspace required for a given mix of filters.
To avoid the array bounds defect, the procedural design
encourages developers to allocate more workspace than
necessary for a given mix of filters.

Polymorphism
In object oriented systems, a derived class can be as-
signed to and accessed through a reference†† to its base
class. Since FirstOrderFilter and SecondOrderFilter
inherit from Filter, FirstOrderFilter and SecondOrder-
Filter objects can be assigned to Filter pointers. For
example,

Filter* filter_1 =
new FirstOrderFilter(timer,
mode, a, b, c, d, TUSTIN);

Filter* filter_2 =
new SecondOrderFilter(timer,
mode, a, b, c, d, e, f, EULER);

Client code can only invoke methods in the Filter class
interface through these pointers. However, polymor-
phism allows the derived class to redefine the behavior
of methods in the base class interface. The reset() and
calculate() methods in Filter are polymorphic. Execut-
ing filter_1->reset() actually calls FirstOrderFil-
ter::reset(). Likewise, filter_2->reset() actually calls
SecondOrderFilter::reset(). In the Filter design, the
client does not call the polymorphic functions directly.
Instead, the client calls fastFilterCalc(). fastFilterCalc()
calls reset() or calculate() as appropriate for the current

†† A pointer or reference in C++.

simulation mode‡‡. Thus, the control system code exe-
cutes the filters as follows:

double output_1 =
filter_1->fastFilterCalc(input_1);

double output_2 =
filter_2->fastFilterCalc(input_2);

The syntax for both filters is identical even though the
filters are defined with different transfer functions and
different z-transforms. The first line will execute a first
order filter using a Tustin z-transform. The second line
will execute a second order filter using an Euler z-
transform. No part of the filter definition appears in the
two statements. Instead, filters are defined when con-
structed. The developer can change the order of the
transfer function, the Laplace-space coefficients, or the
digital algorithm without modifying the operational
code. The execution of the filter is separate from its
definition.

All filter definitions are collected into one block of code
within the initialization unit. Viewing all of the defini-
tions is simple. The developer does not have to travel
from one filter execution to the next to observe all the
definitions. The collected definitions can be viewed as
a legend to the filters in the control system. The fact
that filters must be named makes this notion more use-
ful. Filter object names can correspond to names on a
block diagram facilitating verification. In the proce-
dural design, naming the output of the filter after the
name on the block diagram provides a similar link; the
block diagram name and the filter definition appear on
the same line. However, the developer must still trav-
erse hundreds of lines of code to verify all of the filters.

Being able to cluster the filter definitions also facilitates
the creation and maintenance of multiple configurations.
To define and manage multiple configurations, only one
conditional construct is required in the initialization
code. All the configurations and their associated filter
definitions appear in the same block of code for easy
identification. To add a new configuration, the devel-
oper simply extends the conditional construct and
populates the new condition with filter construction

‡‡ In HOLD mode, fastFilterCalc() does not call either
method; it returns the last output.

7
American Institute of Aeronautics and Astronautics

statements. No conditional statements need appear in
the operational code; the complexity of the operational
code is not increased by multiple filter configurations.
The object-oriented design successfully allows the
whole filter definition to be configured during initiali-
zation. The operational code is no longer forced to
redundantly evaluate one-time initialization logic.

The following examples summarize the steps involved
in modifying filters and creating a new configuration
using the object-oriented design; they represent worst
case conditions: order, coefficients, and digital algo-
rithm are changed. The filter order is being increased in
the example.

Changing an existing filter
1) Search the initialization code for the filter using its

name.
2) Change the filter construction line to construct a

filter according to the new definition.

Creating a new configuration
1) Search the initialization code for the conditional

construct.
2) Expand the conditional construct for the new con-

figuration.
3) For each filter, construct a filter object of the ap-

propriate type and assign it to its corresponding
Filter reference.

The steps for the object-oriented design are fewer than
the steps for the procedural design. Changing an exist-
ing filter takes two steps in the object-oriented design
versus seven in the procedural design. Creating a new
configuration requires two one-time steps and one addi-
tional step for each filter in the object-oriented design.
The procedural design can require eight steps for each
filter. The possibility that a step will be neglected or
performed incorrectly is reduced in the object-oriented
design. Moreover, the steps only affect one code unit,
initialization. Thus, there are fewer code units to re-
view, test, and verify. Changes to fewer code units po-
tentially leads to fewer re-compilations. Isolating the
changes to the initialization unit also facilitates configu-
ration management of the changes. Compared to the
operational code, the initialization unit is usually
smaller and changes less frequently because it focuses

on one task, defining the variables in the control system.
This simplifies the reconciling of changes from multiple
developers. All these factors indicate that the object-
oriented design is less costly to maintain than the pro-
cedural design.

Advantages of Z-Transforms as Objects
The discussion thus far concerns the maintenance of
filters whose definition is immutable during operation.
Many of the advantages that the object-oriented design
holds over the procedural design disappear when the
filter is mutable, i.e. the coefficients of the filter change
during operation. In this situation, the order and coeffi-
cients of the filter must be known at the point of execu-
tion. The filter design reflects this restriction. Mutable
filter calculations are handled by the slowFilterCalc()
method. This method is not polymorphic. It is declared
and defined in each derived class; it does not appear in
the Filter class interface. The method can only be in-
voked by accessing it through the derived class. For
example,

Initialization Code:
FirstOrderFilter filter_1(

timer, mode, a, b, c, d, TUSTIN);
SecondOrderFilter filter_2(timer,

mode, a, b, c, d, e, f, EULER);

Execution Code:
filter_1.slowFilterCalc(

input, a, b, c, d);
filter_2.slowFilterCalc(
 input, a, b, c, d, e, f);

filter_1 and filter_2 are objects of the FirstOrderFilter
and SecondOrderFilter classes; they are not references
to the base Filter class as in the previous example.
They implicitly identify the order of the transfer func-
tion wherever they are used. The coefficients appear as
arguments to the slowFilterCalc() call; thus, they are
also defined wherever slowFilterCalc() is execute.

However, the digital algorithm does not appear in the
operational code as it does in the procedural design.
The z-transform algorithm that the filter uses can be
modified without changing the operational code. Con-
figurations that differ only by the z-transform can still
be defined in the initialization code. The procedural
design still changes the operational code when the z-

8
American Institute of Aeronautics and Astronautics

transform is changed. Thus, the object-oriented design
can still configure part of the mutable filter (i.e. the z-
transform) in the initialization code; the procedural de-
sign forces all configuration logic into the operational
code.

Polymorphism and encapsulation make this possible.
How the z-transform and filter classes interact is a mi-
crocosm of how the filter and control system classes
interact. The FirstOrderFilter accesses the derived z-
transform class only through a reference to the FirstOr-
derTransform base class. The z-transform is defined
only in the FirstOrderFilter constructor. The FirstOr-
derFilter constructs a z-transform according to the trans-
form enumeration and assigns the z-transform object to
a FirstOrderTransform reference. The filter’s opera-
tional code only uses the reference; thus, the definition
of the z-transform does not appear in the filter’s opera-
tional code. The z-transform is configured once, in the
filter’s constructor call.

Performance
In a simulation environment, performance is an impor-
tant factor in analyzing a design. Even though the ob-
ject-oriented design facilitates maintenance, it must
perform adequately to be a good design for simulation.
The performance of the LaSRS++ filters was compared
against those in LaSRS. The comparison was per-
formed on an SGI Origin 2000. The SGI MIPSPro
compiler version 7.2.1.3m was used to compile both the
C++ and FORTRAN source. All files were compiled
using the ‘–O2’ optimization flag; no other optimization
options were included. Performance was analyzed us-
ing the SGI Performance Analyzer. The performance
analyzer was set to use program counter sampling and
the R10000 hardware cycle counter. The test program
ran each filter one million times using a predefined set
of numbers for input. The performance tests were run
ten times to verify consistency of the results. The me-
dian cycle count from the ten runs was used to calculate
the average cycle count per call; the average was
rounded to the nearest integer. The results appear in
Table 1.

Table 1 C++ vs. FORTRAN Performance§§

Average Cycle CountFilter Type
FORTRAN C++

First Order Tustin 46 34
Second Order Tustin 50 43

The numbers demonstrate that the object-oriented de-
sign has performance comparable to the procedural de-
sign¶¶. Performance is not sacrificed by using the ob-
ject-oriented design.

Conclusions
The object-oriented design facilitates maintenance of
filters by moving the definition of a filter from its point
of execution to the initialization code. In the initializa-
tion code, all filter definitions can be collected for easy
inspection and modification. Multiple configurations
can be created and managed by placing these filter col-
lections into one conditional construct. This “one-time”
configuration logic is also efficiently placed in the ini-
tialization code. The procedural design can force con-
figuration logic into the operational code where it is
redundantly evaluated each frame. The object-oriented
design also shields the developer from the need to cre-
ate and manage workspace data for the filter. Errors
associated with active management of the workspace
are eliminated. In comparison to the procedural design,
the object-oriented design reduces the steps to change
an existing filter or add a new configuration. Changes
can be made rapidly, with few errors. The benefits of
the object-oriented design are obtained without sacri-
ficing performance.

§§ For both the FORTRAN and C++ source, functions
optimized for immutable filters were used, a.k.a. the
“fast” filter calculations.
¶¶ The performance tests were not exhaustive. Other
compilers or other optimization flags could change the
results. However, the results are sufficient to demon-
strate comparable performance.

9
American Institute of Aeronautics and Astronautics

Bibliography
1 Booch, Grady. Object-Oriented Analysis and Design
With Applications. The Benjamin/Cummings Publish-
ing Company, Inc., Redwood City, CA, 1994. ISBN 0-
8053-5340-2.
2 Stroustrop, Bjarne. The C++ Programming Lan-
guage. Addison-Wesley Publishing Company, Read-
ing, MA, 1997. ISBN 0-201-88954-4.
3 Working Paper for Draft Proposed International
Standard for Information Systems – Programming Lan-
guage C++. ANSI X3J16/96-0225, 1996.
4 Quatrani, Terry. Visual Modeling With Rational Rose
and UML. Addison-Wesley. Reading, MA, 1998.
ISBN 0-201-31016-3.
5 Stevens, Brian L.; Lewis, Frank L. Aircraft Control
and Simulation. Addison-Wesley Publishing Company,
New York, NY, 1992. ISBN 0-471-61397-5.
6 Gamma, Erich; Helm, Richard; Johnson, Ralph; Vlis-
sides, John. Design Patterns: Elements of Object-
Oriented Software. Addison Wesley Publishing Com-
pany, Reading, MA, 1995. ISBN 0-201-63361-2.
7 Leslie, R.; Geyer, D.; Cunningham, K.; Madden, M.;
Kenney, P.; Glaab, P. LaSRS++: An Object-Oriented
Framework for Real-Time Simulation of Aircraft.
AIAA-98-4529, Modeling and Simulation Technology
Conference, Boston, MA, August 1998.

	AN OBJECT-ORIENTED DESIGN FOR RAPID MODIFICATION OF FILTERS
	Abstract
	Introduction
	The Procedural Design
	Changing an existing filter
	Creating a new configuration

	The Object-Oriented Design
	Encapsulation
	Polymorphism
	Changing an existing filter
	Creating a new configuration
	Advantages of Z-Transforms as Objects
	Performance

	Conclusions
	Bibliography

